Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Adv ; 9(48): eadi9134, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019905

RESUMO

Musculoskeletal disorders contribute substantially to worldwide disability. Anterior cruciate ligament (ACL) tears result in unresolved muscle weakness and posttraumatic osteoarthritis (PTOA). Growth differentiation factor 8 (GDF8) has been implicated in the pathogenesis of musculoskeletal degeneration following ACL injury. We investigated GDF8 levels in ACL-injured human skeletal muscle and serum and tested a humanized monoclonal GDF8 antibody against a placebo in a mouse model of PTOA (surgically induced ACL tear). In patients, muscle GDF8 was predictive of atrophy, weakness, and periarticular bone loss 6 months following surgical ACL reconstruction. In mice, GDF8 antibody administration substantially mitigated muscle atrophy, weakness, and fibrosis. GDF8 antibody treatment rescued the skeletal muscle and articular cartilage transcriptomic response to ACL injury and attenuated PTOA severity and deficits in periarticular bone microarchitecture. Furthermore, GDF8 genetic deletion neutralized musculoskeletal deficits in response to ACL injury. Our findings support an opportunity for rapid targeting of GDF8 to enhance functional musculoskeletal recovery and mitigate the severity of PTOA after injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite , Animais , Humanos , Camundongos , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/tratamento farmacológico , Lesões do Ligamento Cruzado Anterior/cirurgia , Modelos Animais de Doenças , Músculo Esquelético/patologia , Miostatina/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/etiologia , Osteoartrite/patologia
2.
J Appl Physiol (1985) ; 135(6): 1403-1414, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37705447

RESUMO

Changes in skeletal muscle are an important aspect of overall health. The collection of human muscle to study cellular and molecular processes for research requires a needle biopsy procedure which, in itself, can induce changes in the tissue. To investigate the effect of repeat tissue sampling, we collected skeletal muscle biopsy samples from vastus lateralis separated by 7 days. Cellular infiltrate, central nucleation, enlarged extracellular matrix, and rounding of muscle fibers were used as indices to define muscle damage, and we found that 16/26 samples (61.5%) revealed at least two of these symptoms in the secondary biopsy. The presence of damage influenced outcome measures usually obtained in human biopsies. Damaged muscle showed an increase in the number of small fibers even though average fiber and fiber type-specific cross-sectional area (CSA) were not different. This included higher numbers of embryonic myosin heavy chain-positive fibers (P = 0.001) as well as elevated satellite cell number (P = 0.02) in the damaged areas and higher variability in satellite cell count in the total area (P = 0.04). Collagen content was higher in damaged (P = 0.0003) as well as nondamaged areas (P = 0.05) of the muscle sections of the damaged compared with the nondamaged group. Myofibrillar protein and ribonucleic acid (RNA) fractional synthesis rates were not significantly different between the damaged compared with the nondamaged group. Results indicate that common outcomes as well as outcome variability in human muscle tissue are affected by previous biopsies. Therefore, the extent of potential damage should be assessed when performing repeated biopsies.NEW & NOTEWORTHY Indices of damage can be found in repeated biopsy samples of nonintervened control legs. Variables, directly and not directly related to muscle damage or regeneration, were compromised in second biopsy. There is a need to determine potential damage within muscle tissue when repeated muscle sampling is part of the study design. Muscle biopsy sampling may be a source of increased heterogeneity in human muscle data.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Biópsia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Músculo Quadríceps
3.
Front Physiol ; 13: 872745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492586

RESUMO

Metformin and statins are currently the focus of large clinical trials testing their ability to counter age-associated declines in health, but recent reports suggest that both may negatively affect skeletal muscle response to exercise. However, it has also been suggested that metformin may act as a possible protectant of statin-related muscle symptoms. The potential impact of combined drug use on the hypertrophic response to resistance exercise in healthy older adults has not been described. We present secondary statin analyses of data from the MASTERS trial where metformin blunted the hypertrophy response in healthy participants (>65 years) following 14 weeks of progressive resistance training (PRT) when compared to identical placebo treatment (n = 94). Approximately one-third of MASTERS participants were taking prescribed statins. Combined metformin and statin resulted in rescue of the metformin-mediated impaired growth response to PRT but did not significantly affect strength. Improved muscle fiber growth may be associated with medication-induced increased abundance of CD11b+/CD206+ M2-like macrophages. Sarcopenia is a significant problem with aging and this study identifies a potential interaction between these commonly used drugs which may help prevent metformin-related blunting of the beneficial effects of PRT. Trial Registration: ClinicalTrials.gov, NCT02308228, Registered on 25 November 2014.

4.
J Appl Physiol (1985) ; 132(6): 1432-1447, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482328

RESUMO

In older individuals, hypertrophy from progressive resistance training (PRT) is compromised in approximately one-third of participants in exercise trials. The objective of this study was to establish novel relationships between baseline muscle features and/or their PRT-induced change in vastus lateralis muscle biopsies with hypertrophy outcomes. Multiple linear regression analyses adjusted for sex were performed on phenotypic data from older adults (n = 48 participants, 70.8 ± 4.5 yr) completing 14 wk of PRT. Results show that baseline muscle size associates with growth regardless of hypertrophy outcome measure [fiber cross-sectional area (fCSA), ß = -0.76, Adj. P < 0.01; thigh muscle area by computed tomography (CT), ß = -0.75, Adj. P < 0.01; dual-energy X-ray absorptiometry (DXA) thigh lean mass, ß = -0.47, Adj. P < 0.05]. Furthermore, loosely packed collagen organization (CO, ß = -0.44, Adj. P < 0.05) and abundance of CD11b+/CD206- immune cells (ß = -0.36, Adj. P = 0.10) were negatively associated with whole muscle hypertrophy, with a significant sex interaction on the latter. In addition, a composite hypertrophy score generated using all three measures reinforces significant fiber level findings that changes in myonuclei (MN) (ß = 0.67, Adj. P < 0.01), changes in immune cells (ß = 0.48, Adj. P < 0.05; both CD11b+/CD206+and CD11b+/CD206- cells), and capillary density (ß = 0.56, Adj. P < 0.01) are significantly associated with growth. Exploratory single-cell RNA-sequencing of CD11b+ cells in muscle in response to resistance exercise showed that macrophages have a mixed phenotype. Collagen associations with macrophages may be an important aspect in muscle response heterogeneity. Detailed histological phenotyping of muscle combined with multiple measures of growth response to resistance training in older persons identify potential new mechanisms underlying response heterogeneity and possible sex differences.NEW & NOTEWORTHY Extensive analyses of muscle features associated with muscle size and resistance training response in older persons, including sex differences, and evaluation of multiple measures of hypertrophy are discussed. Collagen organization and CD11b-expressing immune cells offer potential new targets to augment growth response in older individuals. A hypertrophy composite score reveals that changes in immune cells, myonuclei, and capillary density are critically important for overall muscle growth while sc-RNAseq reveals evidence for macrophage heterogeneity.


Assuntos
Treinamento de Força , Idoso , Idoso de 80 Anos ou mais , Colágeno , Feminino , Humanos , Hipertrofia , Masculino , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia
5.
Geroscience ; 44(4): 1925-1940, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35325353

RESUMO

With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated ß-galactosidase (SA ß-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.


Assuntos
Músculo Esquelético , Senoterapia , Animais , Humanos , Masculino , Camundongos , Hipertrofia/patologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia
6.
FASEB J ; 36(2): e22155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044708

RESUMO

The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor (LIF) is robustly upregulated and can stimulate Mmp14 expression in macrophages. Functional experiments confirmed that modulation of this muscle cell-macrophage axis facilitated Type I collagen turnover. Finally, changes in LIF expression were significantly correlated with MMP14 expression in humans following 14 weeks of PRT. Our experiments reveal a mechanism whereby muscle fibers influence macrophage behavior to promote ECM remodeling in response to mechanical loading.


Assuntos
Matriz Extracelular/metabolismo , Leucócitos Mononucleares/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Humanos , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Treinamento de Força/métodos
7.
Physiol Genomics ; 53(5): 206-221, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870722

RESUMO

The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as 1) predictive of hypertrophy, 2) responsive to RT independent of muscle hypertrophy, or 3) plastic with hypertrophy. Older adults (n = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- (n = 31) and post-RT (n = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks (n = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks (n = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.


Assuntos
Redes Reguladoras de Genes , Treinamento de Força , Aumento do Músculo Esquelético/genética , Absorciometria de Fóton , Idoso , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia
8.
Geroscience ; 43(2): 629-644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462708

RESUMO

Preserving muscle mass and strength is critical for long-term health and longevity. Age-related muscle lipid accumulation has been shown to be detrimental to muscle health. In healthy older individuals, we sought to determine whether muscle lipid content, determined from computed tomography, is associated with self-reported physical function, laboratory-measured performance, and the response to progressive resistance training (PRT), and how metformin may alter these responses (N = 46 placebo, 48 metformin). Using multiple linear regression models adjusted for confounders in a large cohort, we show that intermuscular adipose tissue (IMAT) was not associated with baseline function or response to PRT, contrary to previous reports. On the other hand, thigh muscle density (TMD), as an indicator of intra- and extramyocellular lipid (IMCL and EMCL), remained strongly and independently positively associated with physical function and performance following adjustment. Baseline TMD was inversely associated with gains in strength, independent of muscle mass. Percent change in TMD was positively associated with improved chair stand and increased type II fiber frequency but was not associated with muscle hypertrophy or overall strength gain following PRT. For the first time, we show that metformin use during PRT blunted density and strength gains by inhibiting fiber type switching primarily in those with low baseline TMD. These results indicate that participants with higher muscle lipid content derive the most performance benefit from PRT. Our results further indicate that muscle density may be as influential as muscle size for strength, physical function, and performance in healthy older adults. ClinicalTrials.gov , NCT02308228, Registered on 25 November 2014.


Assuntos
Metformina , Treinamento de Força , Idoso , Humanos , Lipídeos , Metformina/uso terapêutico , Força Muscular , Músculo Esquelético
9.
Med Sci Sports Exerc ; 52(11): 2466-2475, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064415

RESUMO

PURPOSE: This study assessed how individuals compensate for energy expended during a 12-wk aerobic exercise intervention, elucidating potential mechanisms and the role exercise dose plays in the compensatory response. PARTICIPANTS AND DESIGN: Three-arm, randomized controlled trial among sedentary adults age 18 to 40 yr, body mass index of 25 to 35. Groups included six exercise sessions per week, two sessions per week, and sedentary control. METHODS: Rate of exercise energy expenditure was calculated from a graded exercise test averaged across five heart rate zones. Energy compensation was calculated as the difference between expected weight loss (based on exercise energy expenditure) and changes in fat and fat-free mass (DXA). Resting energy expenditure was assessed via indirect calorimetry and concentrations of acylated ghrelin, leptin, insulin, and Glucagon-like peptide 1 (GLP-1) were assessed fasting and postprandial (six timepoints over 2 h). RESULTS: The 6-d·wk group expended more energy (2753.5 kcal) and exercised longer (320.5 min) per week than the 2-d·wk group (1490.7 kcal, 1888.8 min, P < 0.05), resulting in greater fat loss compared with the 2-d or control groups (P < 0.05). Exercise groups did not differ in the % or total kcal compensated. Greater decreases in area under the curve (AUC) for acylated ghrelin predicted greater fat loss, regardless of group, energy expended per week, exercise duration, or exercise intensity. Changes in leptin AUC was the only independent predictor for energy compensation, with a greater decrease in leptin AUC predicting less energy compensation. Exercise frequency, energy expended, duration, or intensity did not influence energy compensation. CONCLUSIONS: Leptin is an important factor in successful weight loss through exercise, with greater postprandial decreases promoting less compensation. Greater amounts of exercise do not influence the compensatory response to an exercise-induced energy deficit.


Assuntos
Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Redução de Peso/fisiologia , Adulto , Calorimetria Indireta , Teste de Esforço , Feminino , Humanos , Masculino , Adulto Jovem
10.
Aging Cell ; 18(6): e13039, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557380

RESUMO

Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized, double-blind trial, participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study, and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied, placebo gained more lean body mass (p = .003) and thigh muscle mass (p < .001) than metformin. CT scan showed that increases in thigh muscle area (p = .005) and density (p = .020) were greater in placebo versus metformin. There was a trend for blunted strength gains in metformin that did not reach statistical significance. Analyses of vastus lateralis muscle biopsies showed that metformin did not affect fiber hypertrophy, or increases in satellite cell or macrophage abundance with PRT. However, placebo had decreased type I fiber percentage while metformin did not (p = .007). Metformin led to an increase in AMPK signaling, and a trend for blunted increases in mTORC1 signaling in response to PRT. These results underscore the benefits of PRT in older adults, but metformin negatively impacts the hypertrophic response to resistance training in healthy older individuals. ClinicalTrials.gov Identifier: NCT02308228.


Assuntos
Exercício Físico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Treinamento de Força , Idoso , Idoso de 80 Anos ou mais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Método Duplo-Cego , Feminino , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
11.
PLoS One ; 14(2): e0211629, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730923

RESUMO

Reports using computed tomography (CT) to estimate thigh skeletal muscle cross-sectional area and mean muscle attenuation are often difficult to evaluate due to inconsistent methods of quantification and/or poorly described analysis methods. This CT tutorial provides step-by-step instructions in using free, NIH Image J software to quantify both muscle size and composition in the mid-thigh, which was validated against a robust commercially available software, SliceOmatic. CT scans of the mid-thigh were analyzed from 101 healthy individuals aged 65 and older. Mean cross-sectional area and mean attenuation values are presented across seven defined Hounsfield unit (HU) ranges along with the percent contribution of each region to the total mid-thigh area. Inter-software correlation coefficients ranged from R2 = 0.92-0.99 for all specific area comparisons measured using the Image J method compared to SliceOmatic. We recommend reporting individual HU ranges for all areas measured. Although HU range 0-100 includes the majority of skeletal muscle area, HU range -29 to 150 appears to be the most inclusive for quantifying total thigh muscle. Reporting all HU ranges is necessary to determine the relative contribution of each, as they may be differentially affected by age, obesity, disease, and exercise. This standardized operating procedure will facilitate consistency among investigators reporting computed tomography characteristics of the thigh on single slice images. Trial Registration: ClinicalTrials.gov NCT02308228.


Assuntos
Músculo Esquelético/anatomia & histologia , Coxa da Perna/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Software , Tomografia Computadorizada por Raios X/métodos
12.
PLoS One ; 13(10): e0204529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278056

RESUMO

OBJECTIVE: Area of muscle, fat, and bone is often measured in thigh CT scans when tissue composition is a key outcome. SliceOmatic software is commonly referenced for such analysis but published methods may be insufficient for new users. Thus, a quick start guide to calculating thigh composition using SliceOmatic has been developed. METHODS: CT images of the thigh were collected from older (69 ± 4 yrs, N = 24) adults before and after 12-weeks of resistance training. SliceOmatic was used to segment images into seven density regions encompassing fat, muscle, and bone from -190 to +2000 Hounsfield Units [HU]. The relative contributions to thigh area and the effects of tissue density overlap for skin and marrow with muscle and fat were determined. RESULTS: The largest contributors to the thigh were normal fat (-190 to -30 HU, 29.1 ± 7.4%) and muscle (35 to 100 HU, 48.9 ± 8.2%) while the smallest were high density (101 to 150 HU, 0.79 ± 0.50%) and very high density muscle (151 to 200 HU, 0.07 ± 0.02%). Training significantly (P<0.05) increased area for muscle in the very low (-29 to -1 HU, 5.5 ± 7.9%), low (0 to 34 HU, 9.6 ± 16.8%), normal (35 to 100 HU, 4.2 ± 7.9%), and high (100 to 150 HU, 70.9 ± 80.6%) density ranges for muscle. Normal fat, very high density muscle and bone did not change (P>0.05). Contributions to area were altered by ~1% or less and the results of training were not affected by accounting for skin and marrow. CONCLUSIONS: When using SliceOmatic to calculate thigh composition, accounting for skin and marrow may not be necessary. We recommend defining muscle as -29 to +200 HU but that smaller ranges (e.g. low density muscle, 0 to 34 HU) can easily be examined for relationships with the health condition and intervention of interest. TRIAL REGISTRATION: Clinicaltrials.gov NCT02261961.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Coxa da Perna/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Interface Usuário-Computador , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/diagnóstico por imagem , Idoso , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Tamanho do Órgão , Treinamento de Força , Coxa da Perna/anatomia & histologia , Resultado do Tratamento , Veteranos
13.
Front Immunol ; 9: 440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559978

RESUMO

Natural killer (NK) lymphocyte-mediated cytotoxicity and cytokine secretion control infections and cancers, but these crucial activities decline with age. NK cell development, homeostasis, and function require IL-15 and its chaperone, IL-15 receptor alpha (IL-15Rα). Macrophages and dendritic cells (DC) are major sources of these proteins. We had previously postulated that additional IL-15 and IL-15Rα is made by skeletal muscle and adipose tissue. These sources may be important in aging, when IL-15-producing immune cells decline. NK cells circulate through adipose tissue, where they may be exposed to local IL-15. The objectives of this work were to determine (1) if human muscle, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) are sources of IL-15 and IL-15 Rα, and (2) whether any of these tissues correlate with NK cell activity in elderly humans. We first investigated IL-15 and IL-15Rα RNA expression in paired muscle and SAT biopsies from healthy human subjects. Both tissues expressed these transcripts, but IL-15Rα RNA levels were higher in SAT than in skeletal muscle. We also investigated tissue obtained from surgeries and found that SAT and VAT expressed equivalent amounts of IL-15 and IL-15Rα RNA, respectively. Furthermore, stromal vascular fraction cells expressed more IL-15 RNA than did adipocytes. To test if these findings related to circulating IL-15 protein and NK cell function, we tested 50 healthy adults aged > 70 years old. Plasma IL-15 levels significantly correlated with abdominal VAT mass in the entire cohort and in non-obese subjects. However, plasma IL-15 levels did not correlate with skeletal muscle cross-sectional area and correlated inversely with muscle strength. Plasma IL-15 did correlate with NK cell cytotoxic granule exocytosis and with CCL4 (MIP-1ß) production in response to NKp46-crosslinking. Additionally, NK cell responses to K562 leukemia cells correlated inversely with muscle strength. With aging, immune function declines while infections, cancers, and deaths increase. We propose that VAT-derived IL-15 and IL-15Rα is a compensatory NK cell support mechanism in elderly humans.


Assuntos
Envelhecimento/fisiologia , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/metabolismo , Gordura Intra-Abdominal/patologia , Células Matadoras Naturais/imunologia , Adulto , Idoso , Composição Corporal , Estudos de Coortes , Citotoxicidade Imunológica , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade , Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/genética , Células K562 , Masculino , Pessoa de Meia-Idade , Força Muscular , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Adulto Jovem
14.
Physiol Rep ; 3(6)2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26038468

RESUMO

Reduced vessel density in adipose tissue and skeletal muscle is associated with obesity and may result in decreased perfusion, decreased oxygen consumption, and insulin resistance. In the presence of VEGFA, Angiopoietin-2 (Angpt2) and Angiopoietin-1 (Angpt1) are central determinants of angiogenesis, with greater Angpt2:Angpt1 ratios promoting angiogenesis. In skeletal muscle, exercise training stimulates angiogenesis and modulates transcription of VEGFA, Angpt1, and Angpt2. However, it remains unknown whether exercise training stimulates vessel growth in human adipose tissue, and it remains unknown whether adipose angiogenesis is mediated by angiopoietin signaling. We sought to determine whether insulin-resistant subjects would display an impaired angiogenic response to aerobic exercise training. Insulin-sensitive (IS, N = 12) and insulin-resistant (IR, N = 14) subjects had subcutaneous adipose and muscle (vastus lateralis) biopsies before and after 12 weeks of cycle ergometer training. In both tissues, we measured vessels and expression of pro-angiogenic genes. Exercise training did not increase insulin sensitivity in IR Subjects. In skeletal muscle, training resulted in increased vessels/muscle fiber and increased Angpt2:Angpt1 ratio in both IR and IS subjects. However, in adipose, exercise training only induced angiogenesis in IS subjects, likely due to chronic suppression of VEGFA expression in IR subjects. These results indicate that skeletal muscle of IR subjects exhibits a normal angiogenic response to exercise training. However, the same training regimen is insufficient to induce angiogenesis in adipose tissue of IR subjects, which may help to explain why we did not observe improved insulin sensitivity following aerobic training.

15.
Clin Rheumatol ; 34(11): 1929-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25388646

RESUMO

The goals of this study were to assess the predictive value of chart-abstracted American College of Rheumatology functional status (ACR-FS) with patient-reported ACR-FS and to relate it with measures of muscle function in a single-institution cohort of patients with idiopathic inflammatory myopathies (IIMs). Demographic and clinical data of 102 patients with IIMs regularly followed in the Rheumatology and Neurology Clinics at the University of Kentucky Medical Center between 2006 and 2012 were obtained through retrospective chart review. Clinical and functional status evaluation, muscle performance testing, and body composition measures were performed on a subset of 21 patients. ACR-FS was obtained by both chart abstraction and direct patient report. Spearman's correlations were used to examine the relationship of ACR-FS derived from chart abstraction with direct patient report, as well as the relationship of measures of physical function and body composition with ACR-FS. ACR-FS derived from chart abstraction was significantly correlated with ACR-FS derived from direct patient report (ρ = 0.78, p < 0.001). ACR-FS derived from chart abstraction was also significantly correlated with patient-reported physical function (ρ = -0.71, p < 0.001) and physical activity (ρ = -0.58, p < 0.05), manual muscle testing (ρ = -0.66, p < 0.01), and skeletal muscle endurance as measured by the functional index-2 test (shoulder flexion ρ = -0.62, p < 0.01; hip flexion ρ = -0.65, p < 0.0; heel lift ρ = -0.67, p < 0.01; and toe lift ρ = -0.68, p < 0.01). The ACR-FS is a simple measure of disability that can be used in chart abstraction studies involving IIM patients. We have demonstrated that ACR-FS correlates well with muscle performance tests of strength and endurance.


Assuntos
Avaliação da Deficiência , Músculo Esquelético/fisiopatologia , Miosite/fisiopatologia , Índice de Gravidade de Doença , Adulto , Idoso , Composição Corporal/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Valor Preditivo dos Testes , Estudos Retrospectivos , Reumatologia , Sociedades Médicas , Estados Unidos
16.
Arthritis Rheum ; 65(2): 519-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23124535

RESUMO

OBJECTIVE: To identify muscle physiologic properties that may contribute to postexertional fatigue and malaise in women with fibromyalgia (FM). METHODS: Healthy postmenopausal women with (n = 11) and without (n = 11) FM, ages 51-70 years, participated in this study. Physical characteristics and responses to self-reported questionnaires were evaluated. Strength loss and tissue oxygenation in response to a fatiguing exercise protocol were used to quantify fatigability and the local muscle hemodynamic profile. Muscle biopsies were performed to assess between-group differences in baseline muscle properties using histochemical, immunohistochemical, and electron microscopic analyses. RESULTS: There was no significant difference between healthy controls and FM patients in muscle fatigue in response to exercise. However, self-reported fatigue and pain were correlated with prolonged loss of strength following 12 minutes of recovery in patients with FM. Although there was no difference in percent succinate dehydrogenase (SDH)-positive (type I) and SDH-negative (type II) fibers or in mean fiber cross-sectional area between groups, FM patients exhibited greater variability in fiber size and altered fiber size distribution. In healthy controls only, fatigue resistance was strongly correlated with the size of SDH-positive fibers and hemoglobin oxygenation. In contrast, FM patients with the highest percentage of SDH-positive fibers recovered strength most effectively, and this was correlated with capillary density. However, overall, capillary density was lower in the FM group. CONCLUSION: Peripheral mechanisms, i.e., altered muscle fiber size distribution and decreased capillary density, may contribute to postexertional fatigue in FM. Understanding of these defects in fibromyalgic muscle may provide valuable insight with regard to treatment.


Assuntos
Fibromialgia/fisiopatologia , Fadiga Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Idoso , Eletromiografia , Exercício Físico/fisiologia , Feminino , Fibromialgia/metabolismo , Fibromialgia/patologia , Humanos , Contração Isométrica/fisiologia , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Inquéritos e Questionários
17.
Obesity (Silver Spring) ; 19(9): 1813-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21681223

RESUMO

Bioelectric impedance analyses (BIA) provides a valid and reliable measure of body composition in field, clinical, and research settings if standard protocol procedures are followed, and population-specific equations are available and utilized. The objective of this study was to create and cross-validate a new BIA body composition equation with representative healthy weight (HW), overweight (OW), and obese (OB) young children. Participants were 436 children who were 5-11 years of age. Dual-energy absorptiometry fat-free mass (FFM) was used as the criterion measure and a single frequency tetra-polar BIA device was used to create the new BIA equation. The new BIA equation explained 95.2% of the variance in FFM with no statistical shrinkage upon cross-validation. The use of this equation may help to identify effective intervention strategies to prevent or combat childhood obesity, and may assist in additional conditions or treatments where information concerning body composition measures would provide greater accuracy and sensitivity measures for preventing or combating disease.


Assuntos
Composição Corporal , Pesos e Medidas Corporais/métodos , Absorciometria de Fóton , Algoritmos , Índice de Massa Corporal , Criança , Pré-Escolar , Impedância Elétrica , Feminino , Humanos , Masculino , Obesidade/patologia , Sobrepeso/patologia , Reprodutibilidade dos Testes
18.
Pediatr Exerc Sci ; 22(1): 44-59, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20332539

RESUMO

The purpose of this study was to descriptively compare the physical activity and dietary intake of public school (PSC) versus home schooled children (HSC). Potential parental and home influences were also examined. Thirty six matched pairs of public school-home school children aged 7-11 years participated in this study. Each participant wore an activity monitor and recorded their dietary intake concurrently for seven consecutive days. PSC had significantly more total and weekday steps, and spent more time in moderate-to-vigorous physical activity compared with HSC. There were no differences in dietary intake between the two groups. These results suggest differences in physical activity between PSC and HSC and encourage further study of public and home school environments, in relation to the obesity epidemic.


Assuntos
Características da Família , Atividade Motora , Estado Nutricional , Instituições Acadêmicas , Meio Social , Absorciometria de Fóton , Tecido Adiposo , Índice de Massa Corporal , Criança , Proteção da Criança , Dieta , Ingestão de Energia , Feminino , Comportamentos Relacionados com a Saúde , Indicadores Básicos de Saúde , Humanos , Masculino , Inquéritos Nutricionais , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...